Epoxy Surfaces

for coupling via the N-terminus of biochemical species

Epoxides are cyclic ethers with a highly strained three member ring. Epoxy rings can be easily reacted with nucleophiles e.g. amines, hydrazines, thiols, hydroxides and carboxyl groups. Compared to NHS-esters or 1,4-Phenylene isothiocyanates (PDITC) the epoxy surface is more stable and has a longer shelf-life. Epoxy-surfaces are stable up temperatures of 40°C and are also more stable against humidity compared to NHS- and PDITC-surfaces.

The nucleophilic addition is catalyzed by acid or basic conditions. Under acidic conditions, the oxygen in the ring is positively charged, which facilitates the nucleophilic attack. Under basic conditions the least substituted carbon is attacked by the applied nucleophile in a standard SN2 reaction.

PolyAn equips glass slides, coverslips and polymer slides as well as 96-well plates with 3D-Epoxy surfaces. The 3D-Epoxy 96-well microplates are used mainly if adsorptive binding of peptides or oligonucleotides, for example, to high/medium binding surfaces is ineffective or the binding strength is not sufficient. Areas of application include detection methods such as ELISA, ELI-Spot, protein and peptide arrays and DNA binding.

Please do not hesitate to contact us, if you would like to functionalize a different format or substrate with our 3D-Epoxy surface.

Selected Publications

Epoxy surface for the immobilization of Viruses:

  • Broich, L. et al., `Single influenza A viruses induce nanoscale cellular reprogramming at the virus-cell interface´, Nature Commun., 2025, 16, 3846. DOI: 10.1038/s41467-025-58935-8.
  • Osman, M.K. et al., `The bat influenza A virus subtype H18N11 induces nanoscale MHCII clustering upon host cell attachment´, Nature Commun., 2025, 16, 3847. DOI: 10.1038/s41467-025-58834-y.

Epoxy surface for the immobilization of Peptides:

  • Shen, X. et al., `A Pentavalent HIV-1 Subtype C Vaccine Containing Computationally Selected gp120 Strains Improves the Breadth of V1V2 Region Responses´, Vaccines, 2025, 13, 133. DOI: 10.3390/vaccines13020133.
  • Vanshylla, K. et al., `Mosaic HIV-1 vaccine and SHIV challenge strain V2 loop sequence identity and protection in primates´, npj Vaccines, 2024, 9, 179. DOI: 10.1038/s41541-024-00974-1.
  • Cai, F. et al., `Structural and genetic convergence of HIV-1 neutralizing antibodies in vaccinated nonhuman primates´, PLoS Pathogens, 2021, 17, 1009624. DOI: 10.1371/journal.ppat.1009624.
  • Saunders, K.O. et al., `Lipid nanoparticle encapsulated nucleoside-modified mRNA vaccines elicit polyfunctional HIV-1 antibodies comparable to proteins in nonhuman primates´, npj Vaccines, 2021, 6, 50. DOI: 10.1038/s41541-021-00307-6.
  • Gorini, G.et al., `Engagement of monocytes, NK cells, and CD4+ Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition´, PLoS Pathogens, 2020, 16, 1008377. DOI: 10.1371/journal.ppat.1008377.
  • Schneider, J.R: et al., `A MUC16 IgG Binding Activity Selects for a Restricted Subset of IgG Enriched for Certain Simian Immunodeficiency Virus Epitope Specificities´, J. Virol., 2020, 94, 01246-19. DOI: 10.1128/JVI.01246-19.
  • Shen, X. et al., `HIV-1 Vaccine Sequences Impact V1V2 Antibody Responses: A Comparison of Two Poxvirus Prime gp120 Boost Vaccine Regimens´, Sci. Rep., 2020, 10, 2093. DOI: 10.1038/s41598-020-57491-z.
  • Dennis, M. et al., `Coadministration of CH31 Broadly Neutralizing Antibody Does Not Affect Development of Vaccine-Induced Anti-HIV-1 Envelope Antibody Responses in Infant Rhesus Macaques´, J. Virol., 2019, 93, 01783-18. DOI: 10.1128/JVI.01783-18.
  • Han, Q. et al., `Difficult-to-neutralize global HIV-1 isolates are neutralized by antibodies targeting open envelope conformations´, Nature Commun., 2019, 10, 2898. DOI: 10.1038/s41467-019-10899-2.
  • Jones, A.T. et al., `HIV-1 vaccination by needle-free oral injection induces strong mucosal immunity and protects against SHIV challenge´, Nature Commun., 2019, 10, 798. DOI: 10.1038/s41467-019-08739-4.
  • Nelson, A.N. et al., `Simian-Human Immunodeficiency Virus SHIV.CH505-Infected Infant and Adult Rhesus Macaques Exhibit Similar Env-Specific Antibody Kinetics, despite Distinct T-Follicular Helper and Germinal Center B Cell Landscapes´, J. Virol., 2019, 93, 00168-19. DOI: 10.1128/JVI.00168-19.
  • Sande, C.J. et al., `Comprehensive profiling of antibodies against multiple infectious diseases in serum and the airway mucosa using synthetic peptide-based linear epitope microarrays´, bioRxiv, 2018, ---, ---. DOI: 10.1101/462689 .
  • Schiffner, T. et al., `Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins´, PLoS Pathogens, 2018, 14, 1006986. DOI: 10.1371/journal.ppat.1006986.
  • Wen, Y. et al., `Generation and characterization of a bivalent protein boost for future clinical trials: HIV-1 subtypes CR01_AE and B gp120 antigens with a potent adjuvant´, PLOS one, 2018, 13, 194266. DOI: 10.1371/journal.pone.0194266.
  • Phillips, B. et al., `Impact of Poxvirus Vector Priming, Protein Coadministration, and Vaccine Intervals on HIV gp120 Vaccine-Elicited Antibody Magnitude and Function in Infant Macaques´, Clin. Vacc. Immun., 2017, 24, 00231-17. DOI: 10.1128/CVI.00231-17.
  • Shen, X. et al., `HIV-1 gp120 and Modified Vaccinia Virus Ankara (MVA) gp140 Boost Immunogens Increase Immunogenicity of a DNA/MVA HIV-1 Vaccine´, J. Virol., 2017, 91, 01077-17. DOI: 10.1128/JVI.01077-17.
  • Shen, X. et al., `Cross-Linking of a CD4-Mimetic Miniprotein with HIV-1 Env gp140 Alters Kinetics and Specificities of Antibody Responses against HIV-1 Env in Macaques´, J. Virol., 2017, 91, 00401-17. DOI: 10.1128/JVI.00401-17.
  • Zurawski, G. et al., `Superiority in Rhesus Macaques of Targeting HIV-1 Env gp140 to CD40 versus LOX-1 in Combination with Replication-Competent NYVAC-KC for Induction of Env-Specific Antibody and T Cell Responses´, J. Virol., 2017, 91, 01596-16. DOI: 10.1128/JVI.01596-16.
  • Rohe, A. et al., `Identification of peptidic substrates for the human kinase Myt1 using peptide microarrays´, Bioorg. Med. Chem., 2015, 23, 4936. DOI: 10.1016/j.bmc.2015.05.021.
  • Stephenson, K.E. et al., `Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development´, J. Immunol. Meth., 2015, 416, 105. DOI: 10.1016/j.jim.2014.11.006.
  • Schönberg, A. et al., `The Peptide Microarray ‘‘ChloroPhos1.0’’ Identifies New Phosphorylation Targets of Plastid Casein Kinase II (pCKII) in Arabidopsis thaliana´, PLoS One, 2014, 9, 108344. DOI: 10.1371/journal.pone.0108344.
  • Rapsch, K. et al., `Identification of antimicrobial peptides and immobilization strategy suitable for a covalent surface coating with biocompatible properties´, Bioconjugate Chem., 2014, 25, 308. DOI: 10.1021/bc4004469.
  • Rauh, D. et al., `An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms´, Nature Commun., 2013, 4, 2327. DOI: 10.1038/ncomms3327.

Epoxy surface for the immobilization of Oligonucleotides (DNA/RNA):

  • Warmt, C. et al., `An experimental comparison between primer and nucleotide labelling to produce RPA-amplicons used for multiplex detection of antibiotic resistance genes´, Sci. Rep., 2023, 13, 15734. DOI: 10.1038/s41598-023-42830-7.
  • Warmt, C. et al., `Investigation and validation of labelling loop mediated isothermal amplification (LAMP) products with different nucleotide modifications for various downstream analysis´, Sci. Rep., 2022, 12, 7137. DOI: 10.1038/s41598-022-11320-7.
  • Warmt, C. et al., `Using Cy5‑dUTP labelling of RPA‑amplicons with downstream microarray analysis for the detection of antibiotic resistance genes´, Sci. Rep., 2021, 11, 20137. DOI: 10.1038/s41598-021-99774-z.
  • Díaz-Betancor, Z. et al., `Photoclick chemistry to create dextran-based nucleic acid microarrays´, Anal. Bioanal. Chem., 2019, 411, 6745. DOI: 10.1007/s00216-019-02050-3.
  • Sikora, K. et al., `A Universal Microarray Detection Method for Identification of Multiple Phytophthora spp. Using Padlock Probes´, Amer. Phytopath. Soc., 2012, 102, 635. DOI: 10.1094/PHYTO-11-11-0309.

Epoxy surface for the immobilization of Proteins and Antibodies:

  • Rudokas, V. et al., `Novel monoclonal antibodies against house dust mite allergen Der p 21 and their application to analyze allergen extracts´, PeerJ, 2024, 12, 17233. DOI: 10.7717/peerj.17233.
  • Röckendorf, N. et al., `Parallel detection of multiple biomarkers in a point‑of‑care‑competent device for the prediction of exacerbations in chronic inflammatory lung disease´, Sci. Rep., 2024, 14, 12830. DOI: 10.1038/s41598-024-62784-8.
  • Silimavicius, L. et al., `Microarray-based evaluation of selected recombinant timothy grass allergens expressed in E. Coli and N. Benthamiana´, BMC Biotechnol., 2024, 24, 72. DOI: 10.1186/s12896-024-00902-0.
  • DiNatale, C. et al., `Highly sensitive detection of the neurodegenerative biomarker Tau by using the concentration effect of the pyro-electrohydrodynamic jetting´, Biosens. Bioelectron., 2023, 254, 116234. DOI: 10.1016/j.bios.2024.116234.
  • DiNatale, C. et al., `Optimization of Chemical Protein Conjugation on Activated Glass Surfaces for the Development of an Innovative Biosensor for Testing Astronaut Health Biomarkers at Picogram Levels During Spaceflight´, SSRN, 2023, DOI: 10.2139/ssrn.4479678 .
  • Allelein, S. et al., `Prostate-Specific Membrane Antigen (PSMA)-Positive Extracellular Vesicles in Urine: A Potential Liquid Biopsy Strategy for Prostate Cancer Diagnosis?´, Cancers, 2022, 14, 2987. DOI: 10.3390/cancers14122987.
  • Allelein, S. et al., `Potential and challenges of specifically isolating extracellular vesicles from heterogeneous populations´, Sci. Rep., 2021, 11, 11585. DOI: 10.1038/s41598-021-91129-.
  • Hettegger, P. et al., `High similarity of IgG antibody profiles in blood and saliva opens opportunities for saliva based serology´, PLoS One, 2019, 14, 218456. DOI: 10.1371/journal.pone.0218456.
  • Peter, H. et al., `Lab-on-a-Chip Device for Rapid Measurement of Vitamin D Levels´, Meth. Mol. Biol., 2018, 35, 477. DOI: 10.1007/978-1-4939-7614-0_35.
  • Peter, H. et al., `Lab-on-a-Chip Proteomic Assays for Psychiatric Disorders´, Adv. Exp. Med. Biol., 2017, 33, 339. DOI: 10.1007/978-3-319-52479-5_33.
  • Soria, J. et al., `Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed microarray biomarker validation´, Sci. Rep., 2017, 7, 17478. DOI: 10.1038/s41598-017-17536-2.
  • Gerdtsson, A.S. et al., `Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays´, Microarrays, 2016, 5, 16. DOI: 10.3390/microarrays5020016.

Epoxy surface for the immobilization of Glycans:

  • Kooner, A.S. et al., `Broad-Spectrum Legionaminic Acid-Specific Antibodies in Pooled Human IgGs Revealed by Glycan Microarrays with Chemoenzymatically Synthesized Nonulosonosides´, Molecules, 2024, 29, 3980. DOI: 10.3390/molecules29163980.
  • Parhi, L. et al., `Placental colonization by Fusobacterium nucleatum is mediated by binding of the Fap2 lectin to placentally displayed Gal-GalNAc´, Cell Reports, 2022, 38, 110537. DOI: 10.1016/j.celrep.2022.110537.
  • Noy-Porat, T. et al., `Therapeutic antibodies, targeting the SARS-CoV-2 spike N-terminal domain, protect lethally infected K18-hACE2 mice´, iScience, 2021, 24, 102479. DOI: 10.1016/j.isci.2021.102479.
  • Shanthamurthy, C.D. et al., `Heparan Sulfate Mimetics Differentially Affect Homologous Chemokines and Attenuate Cancer Development´, J. Med. Chem., 2021, 64, 3367. DOI: 10.1021/acs.jmedchem.0c01800.
  • Bashir, S. et al., `Association between Neu5Gc carbohydrate and serum antibodies against it provides the molecular link to cancer: French NutriNet-Santé study´, BMC Medicine, 2020, 18, 262. DOI: 10.1186/s12916-020-01721-8.
  • Shanthamurthy, C.D. et al., `ABO Antigens Active Tri- and Disaccharides Microarray to Evaluate C-type Lectin Receptor Binding Preferences´, Sci. Rep., 2018, 8, 6603. DOI: 10.1038/s41598-018-24333-y.
  • Ben-Arye, S.L. et al., `Profiling Anti-Neu5Gc IgG in Human Sera with a Sialoglycan Microarray Assay´, J.  Vis. Exp., 2017, 125, 56094. DOI: 10.3791/56094.