Increased reliability of cell counting systems by using coated sample cups

Markus Emmler and Britta Dalenbrook-Heil

Pharmaceutical Biotech Production & Development PTDE, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany in Cooperation with PolyAn GmbH, Rudolf-Baschant-Straße 2, 13086 Berlin, Germany, www.poly-an.de

1.) Problem statement: Adsorption of cells to sample cups

Adsorption of cells was observed to a greater or lesser extent

- > with different defined media
- > with different cell lines
- > with different sample cup material
 - styrene acrylonitrile (Cedex® cups, see figure 1)
 - polystyrene
 - polypropylene
 - Eppendorf[®] cups and sample tubes

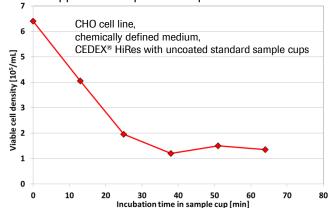


Figure 1: Adsorption of cells to standard sample cup

Adsorption follows certain rules:

- Classical adsorption kinetics: dependent on concentration, saturation, volume / surface ratio
- Adsorption can be inhibited by adsorptive substances: proteins (e.g. BSA), complex cell culture media components (e.g. hydrolysates)
- Adsorption of cells is reversible: desorption by adding trypsine; spontaneous desorption may occur after long incubation time (> 120 min)

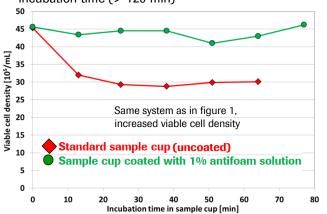


Figure 2: Adsorption to uncoated vs. antifoam coated cups

Adsorption of cells can be avoided by

- > coating with BSA or FCS
- > coating with anti-foam solution (see figure 2)
- > once at a time measurement without autosampler
- > ...other creative lab solutions

Disadvantages of these approaches:

- Coating is not stable, debris may block measurement chamber of the device
- Once at a time measurement does not support high throughput
- BSA or FCS coating is not suitable for GMP environment
- ➤ Hidden expenses:
 - Additional workload for staff (overnight incubation in coating solution and subsequent drying by manual operation)
 - Increased device maintenance cost
 - Follow-up costs of erroneous measurements

2.) Prevention of adsorption by low fouling coating

Challenge:

Anti-fouling or ultra-low-binding surface coatings are common for multi-well plates. Common prices:

- multi-well plate: > 10 €
- sample cup: < 0.1 €
- → Finding a vendor for coated sample cups offering competitive pricing

Solution:

Development of inexpensive low fouling sample cups together with PolyAn GmbH

Advantages:

- > Reliable prevention of cell adsorption
- Coating is covalently bound to cup surface
 → no spalling
- No hidden expenses

Disadvantage:

➤ Increased cost → coated sample cup ~ 1 €

Experimental setup to test coating success:

- ➤ Worst case system: media and cell line with strongest adsorption in previous experiments
- > Two uncoated and ten coated cups were filled with sample of cell suspension at once
- Incubation for 30 minutes at room temperature
- > Successive measurement as pictured in figure 3

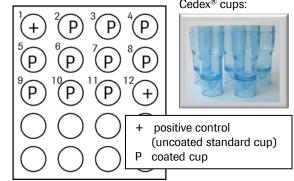


Figure 3: autosampler tray

Results:

- → No adsorption of the cells to the coated sample cups (see figure 4)
- → Successful consistent low fouling coating of sample cups

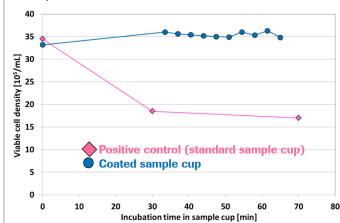


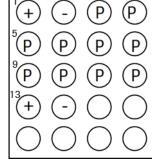
Figure 4: Adsorption of cells to uncoated vs. low fouling coated cups

3.) Quality control of coated sample cups

Challenge:

- Measurement results could be influenced by the quality of the coating
- Need of quality control when reliability of results is of high importance
 - → Decision making in GMP environment
 - → Process characterization
- Quality control (QC) further increases cost
- > Identification of QC parameter:

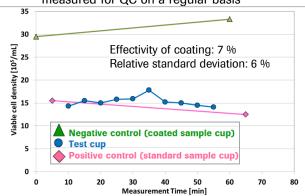
Figure 6: Failure of coating


Cell culture testing is not suitable for QC on a regular basis, but was required for identification of

- → Quality influencing parameters during coating process
- → Quality describing physical attributes that can easily be measured for QC on a regular basis

→ Test cups: variation of potential quality influencing parameter

Experimental setup of cell culture testing:


- Worst case system (media & cell line)
- two uncoated, two standard coated & ten test cups were filled with sample of cell suspension at once
- incubation for 30 minutes at room temperature
- successive measurement as pictured in figure 5

+ positive control (uncoated standard cup)- negative control (coated

standard cup)
P test cups (different coating quality)

Figure 5: autosampler tray

Effectivity of coating: 40 %
Relative standard deviation: 25 %

The standard deviation of the st

Effectivity of coating: 100 %
Relative standard deviation: 3 %

Negative control (coated sample cup)

Test cup

Positive control (standard sample cup)

Measurement Time [min]

Figure 8: Targeted quality coating

4.) Summary