Membranes for the organophilic Pervaporation

The ever increasing requirements on product purity as well as rising energy costs require new, energy-efficient technological approaches for the process industries. Especially the selective elimination of organic compounds from aqueous as well as organic mixtures will play a much greater role in the future. Pervaporation can be a valuable new tool for addressing these challenges.

Pervaporation is an innovative membrane-based separation process which since the 1980’s is being used for the industrial-scale dehydration of organic solvents. Pervaporation and vapour permeation are very closely related processes. In both cases the driving force for the transport of matter through the membrane is a gradient in the chemical potential that can best be described by a gradient in partial vapour pressure of the components. The separation is governed by the physical-chemical affinity between the membrane material and the different compounds to be passed through, i.e. sorption and solubility. Both Pervaporation and vapour permeation processes can thus best be described by the “solution-diffusion mechanism”.

The transport of the compounds through the Pervaporation membrane is illustrated in the adjacent image and involves three steps in series: adsorption, diffusion and desorption. The driving force for the mass transport is a vacuum on the permeate side. The compound which is permeated through the membrane is converted from liquid to vaporous state
PolyAn has developed high-performance composite membranes for the separation of organic liquids by selective Pervaporation. By the novel application of the pore-filling concept membranes can be tailored to specific separation problems. In doing so a thin functional polymer film is covalently immobilized in the separation layer of an asymmetrical ultrafiltration membrane.

Membrane characteristics

Membranes by PolyAn are characterised by an excellent performance and long-term stability:

  • Excellent permeability and selectivity. Systematic adjustment of permeability versus selectivity possible
  • Mechanical robustness during pressure and temperature changes
  • Easy packaging for a wide range of module designs
  • Chemically robust in organic media like:
    • Alkenes (Hexane, …)
    • Aromatics (Toluene, …)
    • Alcohols (Ethanol, …)
    • Ethers (THF, …)
    • Ketones (Acetone, …)
    • Esters (Ethylacetat, …)

PolyAn’s MSE-technology allows the development of a large spectrum of composite membranes and the solution of many separation problems. By the design of the separation layer on a molecular level the PV-selectivity can be adjusted to specific requirements.


Pervaporation is especially effective for diluting solutions containing trace or minor amounts of the component to be removed. This ensures a relatively high selectivity while limiting the required stage cut. In some cases, however, it is economically feasible to permeate the major component through the membrane. Due to the different separation mechanism, it is also possible to break Azeotropes by using Pervaporation.
The following picture illustrates the range of separation tasks that can be solved using organophilic Pervaporation membranes:

PolyAn has developed a range of organophilic Pervaporation membranes for the separation of Aromatics (e.g. Benzene) from Aliphatics, for the separation of alcohols from hydrocarbons (ethers, esters, aromatics) and for the separation of polar from non-polar components.


  • Reduction of aromatics content in hydrocarbons (case study: Arsol Aromatics GmbH)
  • Breaking of azeotropes
  • Purification of extraction media
  • Purification of product streams after extraction
  • Conditioning of liquid hydrocarbons
  • Purification of organic solvents

Selected publications


  • P. Luis, B. Van der Bruggen. The driving force as key element to evaluate the pervaporation performance of multicomponent mixtures. Separation and Purification Technology 148 (2015) 94–102.
  • A. Rozicka, J. Niemistö, R. L. Keiski, W. Kujawski. Apparent and intrinsic properties of commercial PDMS based membranes in pervaporative removal of acetone, butanol and ethanol from binary aqueous mixtures, J. Membr. Sci., In Press, Accepted Manuscript, Available online 4 November 2013.
  • Y. Wang, Tiefentschwefelung von Flugturbinenkraftstoffen für die Anwendung in mobilen Brennstoffzellensystemen, Schriften des Forschungszentrum Jülich, Reihe Energie & Umwelt, Band 155, ISBN 978-3-89336-827-3.
  • P. Luis, J. Degrève, B. Van der Bruggen. Separation of methanol-n-butyl acetate mixtures by pervaporation: Potential of 10 commercial membranes, J. Mem. Sci. 2013, 429, 1-12.
  • A.M. Parvez, P. Luis, T. Ooms, S. Vreysen, P. Vandezande, J. Degrève, B. Van der Bruggen. Separation of ethyl acetate-isooctane mixtures by pervaporation and pervaporation-based hybrid methods, Chem. Eng. J. 2012, 210, 252-262.
  • M. Iravaninia, M. Mirfendereski, T. Mohammadi. Pervaporation separation of toluene/n-heptane mixtures using a MSE-modified membrane: Effects of operating conditions, Chem. Eng. Res. Des. 2012, 90, 397-408.
  • A. L. Khan, S. Basu, A. Cano-Odena, I. F.J. Vankelecom. Novel high throughput equipment for membrane-based gas separations, J. Membr. Sci. 2010, 354, 32-39.
  • F. Farshad, M. Iravaninia, N. Kasiri, T. Mohammadi, J. Ivakpour. Separation of toluene/n-heptane mixtures experimental, modeling and optimization, Chem. Eng. J. 2011, 173, 11-18.
  • M.T. Del Pozo Gómez, P. Ruiz Carreira, J.-U. Repke, A. Klein, T. Brinkmann, G. Wozny. Study of a novel heat integrated hybrid pervaporation distillation process: Simulation and experiments, Comp. Aid. Chem. Eng. 2008, 25, 73-78.


  • H. Matuschewski, P. Schiffmann, H. Notzke, Th. Wolff, U. Schedler, t. Brinkmann, J.-U. Repke. Pilotversuche in der organophilen Pervaporation: Membran, Modul und Simulation – Ein Gesamtkonzept, C.I.T. 2013, 8, 1201-1209.
  • J. Pasel, Y. Wang, S. Hürter, R. Dahl, R. Peters, U. Schedler, H. Matuschewski. Desulfurization of Jet Fuel by Pervaporation, J. Mem. Sci. 2012, 390-391, 12-22.
  • H. Matuschewski, U. Schedler. MSE-Modified Membranes in Organophilic Pervaporation for Aromatics/Aliphatics Separation. Desalination 2008, 224, 124.

Presentations, Posters, Proceedings


  • H. Matuschewski, P. Schiffmann, H. Notzke, Th. Wolff, T. Brinkmann, J.-U. Repke, U. Schedler; Pilot Tests in Organophilic Pervaporation: Membrane, Module and Simulation – An Overall Concept, Aachener Membrankolloquium, 2012, Aachen.
  • H. Matuschewski , U. Schedler , H. Notzke , T. Wolff , P. Schiffmann , J.-U. Repke. Organophilic Pervaporation: Functional Membranes and Modules for Organic/Organic Separation, ICOM, 2011, Amsterdam.
  • P. Schiffmann, J.-U. Repke, H. Matuschewski, U. Schedler, T. Wolff, U. Richter, H. Notzke, T. Brinkmann. Design of PV modules based on computational process modeling, IntConfPerv, 2011, Torun.
  • P. Schiffmann, J.-U. Repke, H. Matuschewski, T. Brinkmann. Development and optimisation of the separation process of organic mixtures by pervaporation, ECCE, 2011, Berlin.
  • H. Matuschewski, U. Schedler. Functional Membranes via Molecular Surface Engineering (MSE) for Organic/Organic Separation, IntConfPerv, 2010, Torun.
  • H. Matuschewski, U. Schedler, E. Maus, H.E.A. Brüschke, F.-L. Micus. Separation of Aromatic/Aliphatic Hydrocarbons by Pervaporation on Industrial Scale, 10th Aachen Membrane Colloquium, 2005, Aachen.
  • H. Matuschewski, J. Frahn, G. Malsch, H.-H. Schwarz, U. Schedler. PV-Separation of Aromatic/Aliphatic Hydrocarbons by Photo-Modified Poly(acrylonitrile) Membranes, Euromembrane, 2004, Hamburg.
  • H. Matuschewski, U. Schedler, E. Maus, H.E.A. Brüschke, F.-L. Micus, H.H. Schwarz. Aromatics Separation from Hydrocarbons on Industrial Scale, Euromembrane, 2004, Hamburg.
  • U. Schedler. Oberflächenfunktionalisierung von Polymermembranen, Informationstag „Membranmaterialien - Anforderungen und Eigenschaften in den verschiedenen Anwendungen“, 2004, DECHEMA, Frankfurt/Main.
  • U. Schedler, T. Thiele, H. Matuschewski, R. Storm. Functionalised Surfaces Via Molecular Surface Engineering (MSE), European Coatings Conference, Smart Coatings II, 2003, Berlin.
  • H.-H. Schwarz, H. Matuschewski, U. Schedler, J. Frahn. Benzolfreies Benzin durch Membranverfahren?, Proc. Tank Tech, 2001, München.
  • H.-H. Schwarz, R. Apostel, H. Matuschewski, U. Schedler. Composite membranes for methanol separation with pervaporation, CHISA 2000, 14th International Congress of Chemical and Process Engineering, 2000, Prag.
  • R. Apostel, H. Matuschewski, U. Schedler, H. H. Schwarz, M. Ulbricht, A. Wenzlaff: Komopositmembranen zur Methanol/MTBE-Trennung mittels Pervaporation, 7. Aachener Membrankolloquium, 1999, Aachen.
  • H. Matuschewski, M. Ulbricht, H. H. Schwarz, U. Schedler: "Hochleistungs-Kompositmembranen für die organoselektive Pervaporation", Polymerwerkstoffe 98, 1998, Merseburg.
  • D. Tittelbach-Helmrich, M. Ulbricht, H. H. Schwarz, U. Schedler: "Hochleistungs-Kompositmembran für die Trennung organischer Mischungen mittels Pervaporation", Berliner Polymerentage, 1997, Berlin.


Please do not hesitate to contact Dr. Matuschewski (, if you have any questions regarding our offering or would like to place an order. We are looking forward to your enquiry.